It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A weighted average current control applied to a three-phase inductor-capacitor-inductor grid-connected battery charger for electric vehicles is presented in this paper. The proposed controller is based on a combination of the partial currents of the system (inverter and grid currents), which are feedback into the control loop. Therefore, by using this approach a reduction of the system order is achieved. The proposed controller allows a bidirectional control of the converter currents, thus allowing both, a controlled charge of the battery and the injection of the current with low distortion in the grid. Further, the implemented controller does not needs to measure the inverter currents. The control strategy is validated with simulation results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Automatic Control Laboratory, National University of San Luis, San Luis, Argentina
2 Research Institute in Energy Technologies and Advanced Materials, National University of Rio Cuarto, National Council of Scientific and Technical Research, Cordoba, Argentina
3 Programa de Ingeniería Eléctrica, Universidad Tecnológica de Bolívar, Cartagena de Indias, Colombia