It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Josephson junctions, in appropriate configurations, can be excellent candidates for detection of single photons in the microwave frequency band. Such possibility has been recently addressed in the framework of galactic axion detection. Here are reported recent developments in the modelling and simulation of dynamic behaviour of a Josephson junction single microwave photon detector. For a Josephson junction to be enough sensitive, small critical currents and operating temperatures of the order of ten of mK are necessary. Thermal and quantum tunnelling out of the zero-voltage state can also mask the detection process. Axion detection would require dark count rates in the order of 0.001 Hz. It is, therefore, is of paramount importance to identify proper device fabrication parameters and junction operation point.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 INFN, Laboratori Nazionali di Frascati, Frascati, Roma, Italy
2 Dipartimento di Fisica, Università di Salerno, Salerno, Italy; INFN, Gruppo Collegato di Salerno, Salerno, Italy
3 INFN, Sezione di Pisa, Pisa, Italy; Dipartimento di Fisica, Università di Pisa, Pisa, Italy
4 Istituto di Fotonica e Nanotecnologie CNR, Roma, Italy
5 INFN, Laboratori Nazionali di Frascati, Frascati, Roma, Italy; Istituto di Fotonica e Nanotecnologie CNR, Roma, Italy
6 Istituto di Fotonica e Nanotecnologie CNR - Fondazione Bruno Kessler, Povo, Trento, Italy; INFN, TIFPA, Povo, Trento, Italy
7 INFN, Gruppo Collegato di Salerno, Salerno, Italy; Dipartimento di Scienze e Tecnologie, Università del Sannio, Salerno, Italy
8 INFN, Sezione di Pisa, Pisa, Italy; NEST, Pisa, Italy
9 INFN, Sezione di Pisa, Pisa, Italy
10 INFN, TIFPA, Povo, Trento, Italy; Fondazione Bruno Kessler, Povo, Trento, Italy
11 Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy; INFN, Sezione di Genova, Genova, Italy
12 INFN, TIFPA, Povo, Trento, Italy; Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
13 INFN, Laboratori Nazionali di Frascati, Frascati, Roma, Italy; Dipartimento di Fisica, Università di Roma Tre, Roma, Italy