It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The inverse transfer of magnetic helicity is studied through a fourth-order finite volume numerical scheme in the framework of compressible ideal magnetohydrodynamics (MHD), with an isothermal equation of state. Using either a purely solenoidal or purely compressive mechanical driving, a hydrodynamic turbulent steady-state is reached, to which small-scale magnetic helical fluctuations are injected. The steady-state root mean squared Mach numbers considered range from 0.1 to about 11. In all cases, a growth of magnetic structures is observed. While the measured magnetic helicity spectral scaling exponents are similar to the one measured in the incompressible case for the solenoidally-driven runs, significant deviations are observed even at relatively low Mach numbers when using a compressive driving. A tendency towards equipartition between the magnetic and kinetic fields in terms of energy and helicity is noted. The joint use of the helical decomposition in the framework of shell-to-shell transfer analysis reveals the presence of three distinct features in the global picture of a magnetic helicity inverse transfer. Those are individually associated with specific scale ranges of the advecting velocity field and commensurate helical contributions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Technische Universität Berlin, ER 3-2, Hardenbergstr. 36a, D-10623 Berlin, Germany