It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide. In adults with NAFLD, fibrosis can develop and progress to liver cirrhosis and liver failure. However, the underlying molecular mechanisms of fibrosis progression are not fully understood. Using total RNA-Seq, we investigated the molecular mechanisms of NAFLD and fibrosis. We sequenced liver tissue from 143 adults across the full spectrum of fibrosis stage including those with stage 4 fibrosis (cirrhosis). We identified gene expression clusters that strongly correlate with fibrosis stage including four genes that have been found consistently across previously published transcriptomic studies on NASH i.e. COL1A2, EFEMP2, FBLN5 and THBS2. Using cell type deconvolution, we estimated the loss of hepatocytes versus gain of hepatic stellate cells, macrophages and cholangiocytes with advancing fibrosis stage. Hepatocyte-specific functional analysis indicated increase of pro-apoptotic pathways and markers of bipotent hepatocyte/cholangiocyte precursors. Regression modelling was used to derive predictors of fibrosis stage. This study elucidated molecular and cell composition changes associated with increasing fibrosis stage in NAFLD and defined informative gene signatures for the disease.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Harvard T.H. Chan School of Public Health, Harvard Chan Bioinformatics Core, Department of Biostatistics, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X)
2 Massachusetts General Hospital, Liver Center, Division of Gastroenterology, Boston, USA (GRID:grid.32224.35) (ISNI:0000 0004 0386 9924); Harvard Medical School, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X)
3 Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riss, Germany (GRID:grid.420061.1) (ISNI:0000 0001 2171 7500)
4 Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, USA (GRID:grid.418412.a) (ISNI:0000 0001 1312 9717)