Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Innovative mechanical services coupled with renewable energy systems are crucial for achieving a net zero energy goal for houses. Conventional systems tend to be vastly oversized because they lack the means to buffer energy flows and are based on peak loads. This paper presents an approach to achieve a net zero energy goal for houses by using a solar PV system, heat pumps, and thermal and electrical storage batteries, all off-the-shelf. Constraining one part of the system and then showing how to manage energy storage and flow is a paradigm shift in sizing. The design is for a modest-sized house built in Melbourne, Australia. The output of a solar photovoltaic array drives a small-scale heat pump to heat water, buffering its energy in a thermal battery to energise a radiant space heating system. Space cooling is provided by a separate heat pump. Through energy storage in electrical and thermal batteries, it is possible to meet the electricity, heating and cooling needs of the house for the Melbourne climate with a heat pump that draws less than 1 kW. The design methodology is detailed in an appendix and can be applied to similar projects. This paper contributes to similar work worldwide that aims to reinforce innovative renewable energy driven service design.

Details

Title
Applying Solar PV to Heat Pump and Storage Technologies in Australian Houses
Author
Simko, Tom 1 ; Luther, Mark B 2   VIAFID ORCID Logo  ; Li, Hong Xian 2 ; Horan, Peter 3   VIAFID ORCID Logo 

 School of Property, Construction and Project Management, RMIT University, Melbourne, VIC 3000, Australia; [email protected] 
 School of Architecture and Built Environment, Deakin University, Geelong, VIC 3220, Australia; [email protected] 
 Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3220, Australia; [email protected] 
First page
5480
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2571059879
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.