Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We investigated the protective effect and mechanisms of apigenin against cognitive impairments in a scopolamine-injected mouse model. Our results showed that intraperitoneal (i.p.) injection of scopolamine leads to learning and memory dysfunction, whereas the administration of apigenin (synthetic compound, 100 and 200 mg/kg/day) improved cognitive ability, which was confirmed by behavioral tests such as the T-maze test, novel objective recognition test, and Morris water maze test in mice. In addition, scopolamine-induced lipid peroxidation in the brain was attenuated by administration of apigenin. To further evaluate the protective mechanisms of apigenin on cognitive and memory function, Western blot analysis was carried out. Administration of apigenin decreased the B-cell lymphoma 2-associated X/B-cell lymphoma 2 (Bax/Bcl-2) ratio and suppressed caspase-3 and poly ADP ribose polymerase cleavage. Furthermore, apigenin down-regulated the β-site amyloid precursor protein-cleaving enzyme, along with presenilin 1 (PS1) and PS2 protein levels. Apigenin-administered mice showed lower protein levels of a receptor for advanced glycation end-products, whereas insulin-degrading enzyme, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) expression were promoted by treatment with apigenin. Therefore, this study demonstrated that apigenin is an active substance that can improve cognitive and memory functions by regulating apoptosis, amyloidogenesis, and BDNF/TrkB signaling pathways.

Details

Title
Apigenin Ameliorates Scopolamine-Induced Cognitive Dysfunction and Neuronal Damage in Mice
Author
Kim, Yeojin 1 ; Kim, Jihyun 2   VIAFID ORCID Logo  ; He, Meitong 2 ; Lee, Ahyoung 3   VIAFID ORCID Logo  ; Cho, Eunju 2   VIAFID ORCID Logo 

 Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea; [email protected] (Y.K.); [email protected] (J.K.); [email protected] (M.H.); Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea 
 Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea; [email protected] (Y.K.); [email protected] (J.K.); [email protected] (M.H.) 
 Department of Food Science, Gyeongsang National University, Jinju 52725, Korea 
First page
5192
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2571440595
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.