Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rapid urbanization, aging infrastructure, and changes in rainfall patterns linked to climate change have brought considerable challenges to water managers around the world. Impacts from such drivers are likely to increase even further unless the appropriate actions are put in place. Floods, landslides, droughts and water pollution are just a few examples of such impacts and their corresponding consequences are in many cases devastating. At the same time, it has become a well-accepted fact that traditional (i.e., grey infrastructure) measures are no longer effective in responding to such challenges. Nature-based solutions (NBS) have emerged as a new response towards hydro-meteorological risk reduction and the results obtained to date are encouraging. However, their application has been mainly in the area of water quantity management with few studies that report on their efficiency to deal with water quality aspects. These solutions are based on replicating natural phenomena and processes to solve such problems. The present paper addresses the question of three NBS systems, namely, bio-retention cells, vegetative swales and porous pavements, for the removal of total suspended solids (TSS), total nitrogen (TN) and total phosphorus (TP) when applied in different configurations (single or networked). The results presented in this paper aim to advance the understanding of their performances during varying rainfall patterns and configurations and their potential application conditions.

Details

Title
Evaluation of Pollutant Removal Efficiency by Small-Scale Nature-Based Solutions Focusing on Bio-Retention Cells, Vegetative Swale and Porous Pavement
Author
Arlex Sanchez Torres; Vojinovic, Zoran
First page
2361
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2571550569
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.