Abstract

Bitcoin en popüler ve yaygın olarak kullanılan dijital para birimidir. Bu nedenle, Bitcoin fiyat hareketinin tahmini finansal piyasalar için büyük önem taşımaktadır. Bitcoin fiyat tahmininde ekonometrik modellerin yanında veri madenciliği yöntemlerinden de faydalanılmaktadır. Veri madenciliğinde kullanılan araç ve yöntemler yardımıyla veriler modellenerek yararlanılacak bilgilere dönüştürülürler. K-Star algoritması veri madenciliği, obje tanımlama ve kontrol sistemleri gibi birçok alanda kullanılmakta olan örnek tabanlı bir yaklaşımdır. Bu çalışmada Makroekonomik değişkenlerin Bitcoin fiyatlarını etkileme seviyeleri, Makine Öğrenme yöntemlerinden Lazy Learning Öğrenmeye Dayalı K-Star Algoritması kullanılarak analiz edilmiştir. Çalışmanın veri seti, bağımlı ve bağımsız değişkenlerin 3 Ocak 2017 - 30 Ocak 2019 yılları arasındaki iş günü bazında 510 adet gözlem değerini içermektedir. Bu gözlemlerin 474 adedi (%93’ü) algoritmanın modellenmesi (eğitim) için, 36 adedi (%7’si) ise sınıflandırma (test) için kullanılmıştır. Modelin Bitcoin fiyatlarını gelecek dönem “yükseliş” mi yoksa “düşüş” mü göstereceğine ilişkin sınıflandırma başarısının %61,1 oranında olduğu, Bitcoin fiyatlarının “yükseliş” göstereceğine ilişkin doğru sınıflandırma başarısının %71,42, “düşüş” göstereceğine ilişkin doğru sınıflandırma başarısının ise %46,66 olduğu tespit edilmiştir. Sonuç olarak Makine Öğrenme Tekniğinin belli bir performans gösterdiği ancak Bitcoin fiyatlarının öngörülebilirliğinin henüz beklentinin altında olduğu ortaya çıkmıştır.

Alternate abstract:

Bitcoin is the most popular and widely used digital currency. Therefore, the prediction of the Bitcoin price movement is of great importance for the financial markets. In addition to econometric models, data mining methods are used in Bitcoin price estimation. With the help of the tools and methods used in data mining, the data is modeled and converted into information to be utilized. K-Star algorithm is an example based approach which is used in many fields such as data mining, object identification and control systems. In this study, the effect levels of Macroeconomic variables on Bitcoin prices are analyzed by using K-Star Algorithm based on Lazy Learning which is one of the Machine Learning Method. The data set of the study includes 510 observational values ​​of dependent and independent variables between 3 January 2017 - 30 January 2019. 474 (93%) of these observations are used for modeling (training) and 36 (7%) are used for classification (test). The success rate of the model is 61,1% on whether Bitcoin prices will “increase” or “decrease” in the next period, while the correct classification success rate on an increase rate is 71,42% and the correct classification success rate on a decrease rate is 46,66% on Bitcoin prices. As a result, it is found that Machine Learning Technique shows a certain performance but the predictability of Bitcoin prices is still below the expectations.

Details

Title
MODELING BITCOIN PRICES WITH K-STAR ALGORITHM
Author
KARTAL, Cem  VIAFID ORCID Logo 
Pages
213-231
Section
Articles
Publication year
2020
Publication date
2020
Publisher
Ali Çağlar Çakmak
ISSN
21482586
Source type
Scholarly Journal
Language of publication
Turkish
ProQuest document ID
2572521211
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.