Abstract

Machine learning is an important applied research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas in machine learning in particle physics with a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.

Details

Title
Machine Learning in High Energy Physics Community White Paper
Author
Albertsson, Kim 1 ; Altoe, Piero 2 ; Anderson, Dustin 3 ; Andrews, Michael 4 ; Juan Pedro Araque Espinosa 5 ; Aurisano, Adam 6 ; Basara, Laurent 7 ; Bevan, Adrian 8 ; Bhimji, Wahid 9 ; Bonacorsi, Daniele 10 ; Calafiura, Paolo 9 ; Campanelli, Mario 8 ; Capps, Louis 2 ; Carminati, Federico 11 ; Carrazza, Stefano 11 ; Childers, Taylor 12 ; Coniavitis, Elias 13 ; Cranmer, Kyle 14 ; David, Claire 15 ; Davis, Douglas 16 ; Duarte, Javier 17 ; Erdmann, Martin 18 ; Eschle, Jonas 19 ; Farbin, Amir 20 ; Feickert, Matthew 21 ; Nuno Filipe Castro 5 ; Fitzpatrick, Conor 22 ; Floris, Michele 11 ; Forti, Alessandra 23 ; Garra-Tico, Jordi 24 ; Gemmler, Jochen 25 ; Girone, Maria 11 ; Glaysher, Paul 15 ; Gleyzer, Sergei 26 ; Gligorov, Vladimir 27 ; Golling, Tobias 28 ; Graw, Jonas 2 ; Gray, Lindsey 17 ; Greenwood, Dick 29 ; Hacker, Thomas 30 ; Harvey, John 11 ; Hegner, Benedikt 11 ; Heinrich, Lukas 14 ; Hooberman, Ben 31 ; Junggeburth, Johannes 32 ; Kagan, Michael 33 ; Kane, Meghan 34 ; Kanishchev, Konstantin 7 ; Karpiński, Przemysław 11 ; Kassabov, Zahari 35 ; Kaul, Gaurav 36 ; Kcira, Dorian 3 ; Keck, Thomas 25 ; Klimentov, Alexei 37 ; Kowalkowski, Jim 17 ; Kreczko, Luke 38 ; Kurepin, Alexander 39 ; Kutschke, Rob 17 ; Kuznetsov, Valentin 40 ; Köhler, Nicolas 32 ; Lakomov, Igor 11 ; Lannon, Kevin 41 ; Lassnig, Mario 11 ; Limosani, Antonio 42 ; Louppe, Gilles 14 ; Mangu, Aashrita 43 ; Mato, Pere 11 ; Meinhard, Helge 11 ; Menasce, Dario 44 ; Moneta, Lorenzo 11 ; Moortgat, Seth 45 ; Narain, Meenakshi 46 ; Neubauer, Mark 31 ; Newman, Harvey 3 ; Pabst, Hans 36 ; Paganini, Michela 47 ; Paulini, Manfred 4 ; Perdue, Gabriel 17 ; Perez, Uzziel 48 ; Picazio, Attilio 49 ; Pivarski, Jim 50 ; Harrison, Prosper 51 ; Psihas, Fernanda 52 ; Radovic, Alexander 53 ; Reece, Ryan 54 ; Rinkevicius, Aurelius 40 ; Rodrigues, Eduardo 6 ; Rorie, Jamal 55 ; Rousseau, David 56 ; Sauers, Aaron 17 ; Schramm, Steven 28 ; Schwartzman, Ariel 33 ; Severini, Horst 57 ; Seyfert, Paul 11 ; Siroky, Filip 58 ; Skazytkin, Konstantin 39 ; Sokoloff, Mike 6 ; Stewart, Graeme 59 ; Stienen, Bob 60 ; Stockdale, Ian 61 ; Strong, Giles 5 ; Savannah Thais 47 ; Tomko, Karen 62 ; Upfal, Eli 46 ; Usai, Emanuele 46 ; Ustyuzhanin, Andrey 63 ; Vala, Martin 64 ; Vallecorsa, Sofia 65 ; Vasel, Justin 52 ; Verzetti, Mauro 66 ; Vilasís-Cardona, Xavier 67 ; Jean-Roch Vlimant 3 ; Vukotic, Ilija 68 ; Wang, Sean-Jiun 26 ; Watts, Gordon 69 ; Williams, Michael 70 ; Wu, Wenjing 71 ; Wunsch, Stefan 25 ; Zapata, Omar 72 

 Lulea University of Technology 
 NVidia 
 California Institute of Technology 
 Carnegie Mellon University 
 LIP Lisboa 
 University of Cincinnati 
 Universita e INFN, Padova 
 University of London 
 Lawrence Berkeley National Laboratory 
10  Universita e INFN, Bologna 
11  CERN 
12  Argonne National Laboratory 
13  Universitaet Freiburg 
14  New York University 
15  Deutsches Elektronen-Synchrotron 
16  Duke University 
17  Fermi National Accelerator Laboratory 
18  RWTH Aachen University 
19  Universität Zürich 
20  University of Texas at Arlington 
21  Southern Methodist University 
22  Ecole Polytechnique Federale de Lausanne 
23  University of Manchester 
24  University of Cambridge 
25  Karlsruher Institut für Technologie 
26  University of Florida 
27  Centre National de la Recherche Scientifique 
28  Université de Genève 
29  Louisiana Tech University 
30  Purdue University 
31  University of Illinois at Urbana-Champaign 
32  Max Planck Institut für Physik 
33  SLAC National Accelerator Laboratory 
34  Sound Cloud 
35  University of Milan 
36  Intel 
37  Brookhaven National Laboratory 
38  University of Bristol 
39  Russian Academy of Sciences 
40  Cornell University 
41  University of Notre Dame 
42  University of Melbourne 
43  University of California Berkeley 
44  Universita & INFN, Milano Bicocca 
45  Vrije Universiteit Brussel 
46  Brown University 
47  Yale University 
48  University of Alabama 
49  University of Massachusetts 
50  Princeton University 
51  Florida State University 
52  Indiana University 
53  College of William and Mary 
54  University of California, Santa Cruz 
55  Rice University 
56  Universite de Paris Sud 11 
57  University of Oklahoma 
58  Masaryk University 
59  University of Glasgow 
60  Radboud Universiteit Nijmegen 
61  Altair Engineering 
62  Ohio Supercomputer Center 
63  Yandex School of Data Analysis 
64  Technical University of Kosice 
65  Gangneung-Wonju National University 
66  University of Rochester 
67  University of Barcelona 
68  University of Chicago 
69  University of Washington 
70  Massachusetts Institute of Technology 
71  Chinese Academy of Sciences 
72  OProject and University of Antioquia 
Publication year
2018
Publication date
Sep 2018
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2572548282
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.