Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Commercially available compound CuInGa (S, Se) can be replaced with emerging quaternary compound Cu2ZnSnS4 (Copper Zinc Tin Sulphur or CZSS) for photovoltaic applications due to the high absorption coefficient and optimum bandgap. Unstable sulphur and the co-existence of binary and ternary phases in CZSS are the main obstacles for a single-phase kesterite quaternary compound. To overcome these issues, the researchers are synthesising the CZSS in presence of sulphur and selenium environment. The sulphurization and selenization are the constraints for the synthesis of CZSS and these processes make it costlier. In the present work, the wet-chemical method (i.e., co-precipitation method) was used to synthesise CZSS without vacuum annealing where the sulphur constituent was controlled by changing the stoichiometric ratio. X-ray diffraction (XRD) and Raman analysis confirm that the synthesised CZSS was in polycrystalline and single-phase kesterite nature. The average crystallite sizes for thiourea 16, 18, 20 mmol were found 15 nm, 17 nm and 17 nm, respectively. Surface morphology of the as-prepared film was identified by scanning electron microscope (SEM) and optical bandgap of the film was obtained ~1.33 eV by UV-visible (UV-vis) analysis. The 18 mmol of thiourea with stoichiometric ratio 4:2:2:9 is found the best optimisation for synthesising the CZSS without vacuum annealing by the co-precipitation method. Thus, the thin film of such synthesised CZSS may be employed for the low-cost photovoltaic application.

Details

Title
Co-precipitation Synthesis with a Variation of the Sulphur Composition of Kesterite Phase Cu2ZnSnS4 (CZSS) without Annealing Process
Author
Pal, Krishan 1 ; Maurya, Dheeraj Kumar 2 ; Chaudhary, Priyanka 1 ; Thapa, Khem Bahadur 1 ; Yadav, Bal Chandra 1 

 Department of Physics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow-226025 (UP), India 
 Electro-materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605014, India 
Pages
27-39
Publication year
2021
Publication date
2021
Publisher
Universiti Sains Malaysia Press
ISSN
16753402
e-ISSN
21804230
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2573513633
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.