Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The longitudinal connectivity of many rivers is interrupted by man-made barriers preventing the up- and downstream migration of fishes. For example, dams, weirs, and hydropower plants (HPP) are insuperable obstructions for upstream migration if no special measures like fish passes are put into effect. While upstream fishways have been implemented successfully and are still being optimized, the focus of current research is more and more on effective fish protection and guiding devices for downstream migration. According to current knowledge fish guidance structures (FGS) have a high potential in supporting the downstream migration by leading fishes to a bypass as an alternative to turbine passage. This work presents a structured and straightforward approach for the evaluation of potential locations of FGS combining traditional dimensioning principles with computational fluid dynamics (CFD) and novel findings from etho-hydraulic research. The approach is based on three key aspects: fish fauna, structural conditions, and hydraulic conditions, and includes three assessment criteria, which are used in an iterative process to define potential FGS locations. The hydraulic conditions can be investigated by means of hydrodynamic 3D simulations and evaluated at cross sections of potential FGS positions. Considering fundamentals of fish biology and ethology allows for rating of the flow conditions and thus for a suitability assessment of various locations. The advantage of the proposed procedure is the possibility to assess FGS configurations without implementing the FGS in the numerical model, thus limiting the computational expense. Furthermore, the implementation of various operation conditions is straightforward. The conceptual approach is illustrated and discussed by means of a case study.

Details

Title
Conceptual Approach for Positioning of Fish Guidance Structures Using CFD and Expert Knowledge
Author
Feigenwinter, Linus 1 ; Vetsch, David F 1   VIAFID ORCID Logo  ; Kammerer, Stephan 1 ; Kriewitz, Carl Robert 2 ; Boes, Robert M 1   VIAFID ORCID Logo 

 Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, 8093 Zurich, Switzerland 
 BKW Energie AG, BKW Engineering Viktoriaplatz 2, 3013 Bern, Switzerland 
First page
1646
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2574368764
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.