It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
There have been many recent developments in the application of data-based methods to machine condition monitoring. A powerful methodology based on machine learning has emerged, where diagnostics are based on a two-step procedure: extraction of damage-sensitive features, followed by unsupervised learning (novelty detection) or supervised learning (classification). The objective of the current pair of papers is simply to illustrate one state-of-the-art procedure for each step, using synthetic data representative of reality in terms of size and complexity. The second paper in the pair will deal with novelty detection. Although there has been considerable progress in the use of outlier analysis for novelty detection, most of the papers produced so far have suffered from the fact that simple algorithms break down if multiple outliers are present or if damage is already present in a training set. The objective of the current paper is to illustrate the use of phase-space thresholding; an algorithm which has the ability to detect multiple outliers inclusively in a data set.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dynamics Research Group, Mechanical Engineering Department, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
2 Dipartimento di Ingegneria Meccanica e Aerospaziale Politecnico di Torino Corso Duca degli Abruzzi 24, 10129, Torino, Italy