It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The effect of 20 MeV electron irradiation on the room temperature photoluminescence from homogeneous SiOx and composite Si-SiOx films, containing amorphous or crystalline Si nanoparticles, is studied. Layers with x = 1.5 and 1.7 and thickness of 200 nm were deposited on crystalline silicon substrates by thermal evaporation of SiO in vacuum. Film annealing in an inert atmosphere at 700 oC or 1000 oC for 60 min was applied to grow amorphous or crystalline silicon nanoparticles, respectively, in a SiOx matrix. Samples from all types of films were irradiated with 20 MeV electrons at close to room temperature and a fluence of 2.4x1014 el.cm-2. Photoluminescence was measured under excitation with the 488 nm line of an Ar+ laser. The electron irradiation causes a decrease of the integrated photoluminescence intensity in composite samples with initial x = 1.7 containing amorphous or crystalline nanoparticles and x = 1.5 samples with Si nanocrystals. The electron irradiation of x = 1.5 samples with amorphous nanoparticles slightly increases the photoluminescence intensity. The obtained results are discussed in terms of electron beam induced phase separation and Si nanoparticle size increase.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Solid State Physics, Bulgarian Academy of Sciences,72 Tzarigradsko Chaussee Blvd,1784 Sofia, Bulgaria
2 Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia
3 Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna, Moskow region 141980, Russia