Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rise of autonomous vehicles, drivers are gradually being liberated from the traditional roles behind steering wheels. Driver behavior cognition is significant for improving safety, comfort, and human–vehicle interaction. Existing research mostly analyzes driver behaviors relying on the movements of upper-body parts, which may lead to false positives and missed detections due to the subtle changes among similar behaviors. In this paper, an end-to-end model is proposed to tackle the problem of the accurate classification of similar driver actions in real-time, known as MSRNet. The proposed architecture is made up of two major branches: the action detection network and the object detection network, which can extract spatiotemporal and key-object features, respectively. Then, the confidence fusion mechanism is introduced to aggregate the predictions from both branches based on the semantic relationships between actions and key objects. Experiments implemented on the modified version of the public dataset Drive&Act demonstrate that the MSRNet can recognize 11 different behaviors with 64.18% accuracy and a 20 fps inference time on an 8-frame input clip. Compared to the state-of-the-art action recognition model, our approach obtains higher accuracy, especially for behaviors with similar movements.

Details

Title
A Multi-Semantic Driver Behavior Recognition Model of Autonomous Vehicles Using Confidence Fusion Mechanism
Author
Ren, Hongze; Guo, Yage; Cheng, Xiangyu
First page
218
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
20760825
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576373899
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.