Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Imipenem is the most efficient antibiotic against Acinetobacter baumannii infection, but new research has shown that the organism has also developed resistance to this agent. A. baumannii isolates from a total of 110 clinical samples were identified by multiplex PCR. The antibacterial activity of Syzygium aromaticum multiple extracts was assessed following the GC-Mass spectra analysis. The molecular docking study was performed to investigate the binding mode of interactions of guanosine (Ethanolic extract compound) against Penicillin- binding proteins 1 and 3 of A. baumannii. Ten isolates of A. baumannii were confirmed to carry recA and iutA genes. Isolates were multidrug-resistant containing blaTEM and BlaSHV. The concentrations (0.04 to 0.125 mg mL−1) of S. aromaticum ethanolic extract were very promising against A. baumannii isolates. Even though imipenem (0.02 mg mL−1) individually showed a great bactericidal efficacy against all isolates, the in-silico study of guanosine, apioline, eugenol, and elemicin showed acceptable fitting to the binding site of the A. baumannii PBP1 and/or PBP3 with highest binding energy for guanosine between −7.1 and −8.1 kcal/mol respectively. Moreover, it formed π-stacked interactions with the residue ARG76 at 4.14 and 5.6, Å respectively. These findings might support the in vitro study and show a substantial increase in binding affinity and enhanced physicochemical characteristics compared to imipenem.

Details

Title
Syzygium aromaticum Extracts as a Potential Antibacterial Inhibitors against Clinical Isolates of Acinetobacter baumannii: An In-Silico-Supported In-Vitro Study
Author
Abdelhamed Mahmoud 1 ; Afifi, Magdy M 1 ; Fareed El Shenawy 1 ; Salem, Wesam 2   VIAFID ORCID Logo  ; Elesawy, Basem H 3 

 Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt; [email protected] (A.M.); [email protected] (M.M.A.); [email protected] (F.E.S.) 
 Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt 
 Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia 
First page
1062
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20796382
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576374649
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.