Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present research reports the synthesis of ZrO2-doped TiO2 photocatalysts at different ZrO2 contents (1, 3 and 5% wt.) synthesized by the sol–gel method. The samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction, attenuated total reflectance-Fourier transform infrared, ultraviolet–visible, X-ray photoelectron spectroscopy and N2 adsorption–desorption analysis. The photocatalytic activity of the ZrO2-doped TiO2 was investigated against the dyes methyl orange and rhodamine B through mineralization studies. The ZrO2-doped TiO2 samples presented a semiglobular-ovoid agglomerate shape around 500–800 nm. The samples presented high crystallinity of the TiO2 anatase phase, XPS suggested the formation of Zr–O–Ti bonds and the samples were classified as mesoporous materials with slight changes in the optical features in comparison with pure TiO2. Our study shows that the ZrO2-doped TiO2 composites exhibited a higher photocatalytic activity than just utilizing the synthetized TiO2 and a commercial P25. The different degradation behaviors are attributed to differences in the textural properties, and to the different optical absorptions of the samples due to structural defects created by the level of doping of Zr4+ ions into the TiO2 lattice. Reaction kinetics parameters were calculated by the Langmuir–Hinshelwood model, and a third run cycle of the ZrO2-doped TiO2 at 1% wt. achieved a photocatalytic degradation of 78.1 and 75.5% for RhB and MO, respectively.

Details

Title
Photocatalytic Degradation of Rhodamine B and Methylene Orange Using TiO2-ZrO2 as Nanocomposite
Author
Ruíz-Santoyo, Víctor 1   VIAFID ORCID Logo  ; Marañon-Ruiz, Virginia F 2   VIAFID ORCID Logo  ; Romero-Toledo, Rafael 3 ; González Vargas, Oscar Arturo 4   VIAFID ORCID Logo  ; Pérez-Larios, Alejandro 3   VIAFID ORCID Logo 

 Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingenierías, Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves No. 1200, Tepatitlán de Morelos 47600, Mexico; [email protected] (V.R.-S.); [email protected] (R.R.-T.); Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León No. 1144, Lagos de Moreno 47460, Mexico 
 Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León No. 1144, Lagos de Moreno 47460, Mexico 
 Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingenierías, Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves No. 1200, Tepatitlán de Morelos 47600, Mexico; [email protected] (V.R.-S.); [email protected] (R.R.-T.) 
 Departamento de Ingeniería en Control y|Automatización, Escuela Superior de Ingeniería Mecánica y Eléctrica-Zacatenco, Instituto Politécnico Nacional, UPALM, Av. Politécnico S/N, Col. Zacatenco, Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; [email protected] 
First page
1035
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576383080
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.