Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

In the years that Choristoneura rosaceana was first viewed as a primary pest in fruit orchards, it was routinely targeted with insecticides within integrated pest management (IPM) programs. However, the development of resistance against a number of insecticides in C. rosaceana field populations has limited the efficacy of these control programs. One critical component in C. rosaceana management is to test whether the detected resistance levels resulted in a practical resistance, i.e., a “lack of control under field conditions” or not. Therefore, this study aimed to identify the field performance in apple and cherry orchards of different insecticides against resistant C. rosaceana field populations using field-based residual bioassays and residue analysis. Compounds demonstrating low levels of field-evolved resistance in C. rosaceana populations from apple and cherry orchards did not result in practical resistance in the field-based trial (i.e., lack of control under field conditions). However, compounds with high levels of resistance of C. rosaceana resulted in practical resistance in both resistant populations. Only chlorantraniliprole and indoxacarb showed long-lasting residues with measurable leaf residues over all post-application intervals while the leaf residues of the other compounds had largely degraded within the first 7 days. These findings can help fruit growers make adjustments to spray/re-application intervals and optimally utilize important chemical tools in their integrated pest management programs.

Abstract

Field-based residual bioassays and residue analysis were conducted to assess the field performance and toxicity longevity of different insecticides that had previously been associated with resistance of Choristoneura rosaceana populations collected from apple and cherry orchards. In this study, 12–24 h-old larvae of apple and cherry populations were exposed to apple and cherry leaf samples, respectively, at post-application intervals and a susceptible population served as a reference of each. In the apple and cherry trials, the order of residual longevity of insecticides that effectively controlled the tested populations was as follows: bifenthrin and spinetoram (apple: 14, cherry 21-day post-application), phosmet (apple: 7, cherry 14-day post-application), chlorantraniliprole (apple: 7-day post-application), and indoxacarb and emamectin benzoate (apple: 1, cherry 7-day post-application). Compared to the susceptible population, the resistant populations resulted in a measurable loss of field performance, or “practical resistance”, for the insecticides emamectin benzoate (at 7-day post-application), chlorantraniliprole (at 21-day post-application), and indoxacarb (at all post-application intervals) in the apple trials, while in cherry trial just indoxacarb at 7-day post-application showed a reduced efficacy. In terms of long-lasting residues, only chlorantraniliprole and indoxacarb maintained measurable leaf residues over all post-application intervals while the leaf residues of the other compounds had largely degraded within the first 7 days. These findings can help fruit growers make adjustments to their spray/re-application intervals and optimally utilize important chemical tools in their integrated pest management programs.

Details

Title
Resistance Affects the Field Performance of Insecticides Used for Control of Choristoneura rosaceana in Michigan Apples and Cherries
Author
Hafez, Abdulwahab M 1   VIAFID ORCID Logo  ; Mota-Sanchez, David 2 ; Vandervoort, Christine 3 ; Wise, John C 2 

 Pesticides and Environmental Toxicology Laboratory, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia 
 Department of Entomology, Michigan State University, 243 Natural Science, East Lansing, MI 48824, USA; [email protected] (D.M.-S.); [email protected] (J.C.W.) 
 Pesticide Analytical Laboratory, Michigan State University, 206 Center for Integrated Plant Systems, East Lansing, MI 48824, USA; [email protected] 
First page
846
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576423775
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.