Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chitosan is one of the natural biopolymers that has been studied as an alternative material to replace Nafion membranes as proton change membranes. Nevertheless, unmodified chitosan membranes have limitations including low proton conductivity and mechanical stability. The aim of this work is to study the effect of modifying chitosan through polymer blending with different compositions and the addition of inorganic filler on the microstructure and physical properties of N-methylene phosphonic chitosan/poly (vinyl alcohol) (NMPC/PVA) composite membranes. In this work, the NMPC biopolymer and PVA polymer are used as host polymers to produce NMPC/PVA composite membranes with different compositions (30–70% NMPC content). Increasing NMPC content in the membranes increases their proton conductivity, and as NMPC/PVA-50 composite membrane demonstrates the highest conductivity (8.76 × 10−5 S cm−1 at room temperature), it is chosen to be the base membrane for modification by adding hygroscopic silicon dioxide (SiO2) filler into its membrane matrix. The loading of SiO2 filler is varied (0.5–10 wt.%) to study the influence of filler concentration on temperature-dependent proton conductivity of membranes. NMPC/PVA-SiO2 (4 wt.%) exhibits the highest proton conductivity of 5.08 × 10−4 S cm−1 at 100 °C. In conclusion, the study shows that chitosan can be modified to produce proton exchange membranes that demonstrate enhanced properties and performance with the addition of PVA and SiO2.

Details

Title
Hybrid Composite Membrane of Phosphorylated Chitosan/Poly (Vinyl Alcohol)/Silica as a Proton Exchange Membrane
Author
Nur Adiera Hanna Rosli 1 ; Loh, Kee Shyuan 1   VIAFID ORCID Logo  ; Wai Yin Wong 1   VIAFID ORCID Logo  ; Tian Khoon Lee 2   VIAFID ORCID Logo  ; Ahmad, Azizan 2 

 Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; [email protected] (N.A.H.R.); [email protected] (W.Y.W.) 
 Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; [email protected] (T.K.L.); [email protected] (A.A.) 
First page
675
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576453970
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.