Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Climate change caused by global warming has resulted in an increase in average temperature and changes in precipitation pattern and intensity. Consequently, this has led to an increase in localized heavy rain which intensifies the uncertainty of the development of urban areas. To minimize flood damage in an urban area, this study aims to analyze the flood risk effect on buildings by ranking the risk of flood damage for each building type and sorting the long-term land use plan and the building type that requires particular consideration. To evaluate the flood risk of each building type, vulnerability analysis and exposure analysis were conducted in five regions of the Ulsan City. The vulnerability analysis includes determination of each building type by using the building elements which are sensitive to flood damage. In terms of the exposure analysis, environmental factors were applied to analyze the flood depth. The mapping based on the results from two analyses provided the basis for classifying the flood risk into five classes (green, yellowish green, yellow, orange, red). The results were provided in the urban spatial form for each building type. This analysis shows that the district near the Taehwa river is the area with the highest risk class buildings (red and orange class buildings). Notably, this area plays a pivotal functional role in administrating the Ulsan City and has a high density of buildings. This phenomenon is explained by city development which is centered around the lowland; however, given the high value of property, the potential risk is proven to be high.

Details

Title
Risk Type Analysis of Building on Urban Flood Damage
Author
Park, Kiyong 1 ; Choi, Sang-Hyun 2 ; Yu, Insang 3   VIAFID ORCID Logo 

 School of Planning, Design & Construction, Michigan State University, East Lansing, MI 48824, USA; [email protected] 
 Management Information System, Department of Big Data, Chungbuk National University, Cheongju 28644, Chungbuk, Korea; [email protected] 
 Korea Adaptation Center for Climate Change, Korea Environment Institute, Sejong 30121, Korea 
First page
2505
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576535718
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.