Abstract

Experiments on the Z accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size. Significant progress to combine x-ray Thomson scattering (XRTS), a powerful diagnostic for WDM, with the unique environments created at Z has been accomplished. The large current of Z is used to magnetically launch Al flyers to impact CH2 foam (0.12 g/cm3) samples. The uniformly-shocked CH2 foam volume is about 10 mm3 and the steady shock state lasts up to about 100 ns, which are approximately 1000 & 100 times larger, respectively, than typical laser shocked samples. The Z-Beamlet laser irradiates a 5 μm thick Mn foil near the load to generate 6.181 keV Mn-He-α x-rays that penetrate into the CH2 foam and scatter from it. A high sensitivity x-ray scattering spherical spectrometer with both high spatial and spectral resolution is fielded, which enables benchmark quality data by simultaneously measuring x-rays scattered from shocked and ambient regions of the CH2 foam, and the Mn x-ray source. Experimental efforts have achieved low x-ray background and mitigation of load debris, and measured high quality XRTS data of ambient CH2 foam have validated the technique.

Details

Title
Progress toward x-ray Thomson scattering of warm dense matter on the Z accelerator
Author
Harding, E C 1 ; Bailey, J E 1 ; Desjarlais, M P 1 ; Hansen, S B 1 ; Lemke, R W 1 ; Rochau, G A 1 ; Sinars, D B 1 ; Smith, I C 1 ; Geissel, M 1 ; Reneker, J 1 ; Kernaghan, M D 1 ; Mix, L P 1 ; Wenger, D F 1 

 Sandia National Laboratories, Albuquerque, NM 87185, USA 
Publication year
2014
Publication date
May 2014
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576627501
Copyright
© 2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.