Abstract

In this work, an example of exceptional points in the continuous spectrum of a Hamiltonian of von Neumann-Wigner type is presented and discussed. Remarkably, these exceptional points are not associated with a double pole in the scattering matrix but with a double pole in the normalization factor of the Jost eigenfunctions normalized to unit flux. At the exceptional points the two unnormalized Jost eigenfunctions are no longer linearly independent but coalesce to give rise to two Jordan cycles of generalized bound state energy eigenfunctions in the continuum and a Jordan block representation of the Hamiltonian. The regular scattering eigenfunction vanishes at the exceptional points and the irregular scattering eigenfunction has a double pole at the exceptional points. The scattering matrix is a regular analytical function of the wave number k for all k real including the exceptional points.

Details

Title
Bound states at exceptional points in the continuum
Author
Fernández-García, N 1 ; Hernández, E 2 ; Jáuregui, A 3 ; Mondragón, A 2 

 Sección de Estudios de Posgrado e Investigación, UPIITA-IPN, Av. IPN 2508, 07340, México, D.F., México 
 Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 México D.F., México 
 Departamento de Física, Universidad de Sonora, Apdo. Postal 1626, Hermosillo, Sonora, México 
Publication year
2014
Publication date
May 2014
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576663807
Copyright
© 2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.