It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Meso-scale models are increasingly used for estimating wind resources for wind turbine siting. In this study, we investigate how the Weather Research and Forecasting (WRF) model performs using standard model settings in two different planetary boundary layer schemes for a forested landscape and how this performance is changed when enhancing the roughness by a factor four in one of the schemes. The model simulations were evaluated using data from a 138 m tall mast in southeastern Sweden, where an experiment with six sonic anemometers and standard meteorological instrumentation was performed 2010-2012. The land cover around the mast is dominated by forest and for the most common wind direction, the forest extends more than 200 km from the mast. The two low-roughness simulations showed differences both in terms of estimated wind resource and wind shear. The simulation with enhanced roughness results in an improved correlation with measured data for near-neutral situations in the observed height range, whereas the correlation is deteriorated relative to the standard setup for stable atmospheric stratifications for heights above approximately 80 m. The inclusion of the displacement height in the post-processing of the results is also discussed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Wind Energy, Technical University of Denmark, Denmark
2 Department of Earth Sciences, Uppsala University, Sweden
3 WeatherTech Scandinavia AB, Sweden