Content area

Abstract

A fault diagnosis with commendable accuracy is essential for the reliability of industrial machines. Two main challenges affect the design of high-performing intelligent systems: (i) the selection of a suitable model and (ii) domain adaptation if there is a continuous change in operating conditions. Therefore, we propose an evolutionary Net2Net transformation (EvoN2N) that finds the best suitable DNN architecture with limited availability of labeled data samples. Net2Net transformation-based quick learning algorithm has been used in the evolutionary framework of Non-dominated sorting genetic algorithm II to obtain the best DNN architecture. Net2Net transformation-based quick learning algorithm uses the concept of knowledge transfer from one generation to the next for faster fitness evaluation. The proposed framework can obtain the best model for intelligent fault diagnosis without a long and time-consuming search process. The proposed framework has been validated on the Case Western Reserve University dataset, the Paderborn University dataset, and the gearbox fault detection dataset under different operating conditions. The best models obtained are capable of demonstrating an excellent diagnostic performance and classification accuracy of almost up to 100\% for most of the operating conditions.

Details

1009240
Title
Knowledge Transfer based Evolutionary Deep Neural Network for Intelligent Fault Diagnosis
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 5, 2024
Section
Computer Science; Electrical Engineering and Systems Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-06
Milestone dates
2021-09-28 (Submission v1); 2022-02-10 (Submission v2); 2024-12-05 (Submission v3)
Publication history
 
 
   First posting date
06 Dec 2024
ProQuest document ID
2577597296
Document URL
https://www.proquest.com/working-papers/knowledge-transfer-based-evolutionary-deep-neural/docview/2577597296/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-07
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic