Full text

Turn on search term navigation

Copyright © 2021 Trinh Tan Dat et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

A new modification of multi-CNN ensemble training is investigated by combining multiloss functions from state-of-the-art deep CNN architectures for leaf image recognition. We first apply the U-Net model to segment leaf images from the background to improve the performance of the recognition system. Then, we introduce a multimodel approach based on a combination of loss functions from the EfficientNet and MobileNet (called as multimodel CNN (MMCNN)) to generalize a multiloss function. The joint learning multiloss model designed for leaf recognition allows each network to perform its task and cooperate with the others simultaneously, where knowledge from various trained deep networks is shared. This cooperation-proposed multimodel is forced to deal with more complicated problems rather than a simple classification. Therefore, the network can learn much rich information and improve its generalization capability. Furthermore, a multiloss trade-off strategy between two deep learning models can reduce the effect of redundancy problems in ensemble classifiers. The performance of our approach is evaluated by our custom Vietnamese herbal leaf species dataset, and public datasets such as Flavia, Leafsnap, and Folio are used to build test cases. The results confirm that our approach enhances the leaf recognition performance and outperforms the current standard single networks while having less low computation cost.

Details

Title
Leaf Recognition Based on Joint Learning Multiloss of Multimodel Convolutional Neural Networks: A Testing for Vietnamese Herb
Author
Trinh Tan Dat  VIAFID ORCID Logo  ; Pham Cung Le Thien Vu  VIAFID ORCID Logo  ; Nguyen Nhat Truong  VIAFID ORCID Logo  ; Le Tran Anh Dang  VIAFID ORCID Logo  ; Vu Ngoc Thanh Sang  VIAFID ORCID Logo  ; Pham The Bao  VIAFID ORCID Logo 
Editor
Yugen Yi
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2578643273
Copyright
Copyright © 2021 Trinh Tan Dat et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/