It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
COVID-19 represents the most severe global crisis to date whose public conversation can be studied in real time. To do so, we use a data set of over 350 million tweets and retweets posted by over 26 million English speaking Twitter users from January 13 to June 7, 2020. We characterize the retweet network to identify spontaneous clustering of users and the evolution of their interaction over time in relation to the pandemic’s emergence. We identify several stable clusters (super-communities), and are able to link them to international groups mainly involved in science and health topics, national elites, and political actors. The science- and health-related super-community received disproportionate attention early on during the pandemic, and was leading the discussion at the time. However, as the pandemic unfolded, the attention shifted towards both national elites and political actors, paralleled by the introduction of country-specific containment measures and the growing politicization of the debate. Scientific super-community remained present in the discussion, but experienced less reach and became more isolated within the network. Overall, the emerging network communities are characterized by an increased self-amplification and polarization. This makes it generally harder for information from international health organizations or scientific authorities to directly reach a broad audience through Twitter for prolonged time. These results may have implications for information dissemination along the unfolding of long-term events like epidemic diseases on a world-wide scale.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Bologna, Department of Astronomy and Physics (DIFA), Bologna, Italy (GRID:grid.6292.f) (ISNI:0000 0004 1757 1758)
2 Ecole polytechnique fédérale de Lausanne (EPFL), Digital Epidemiology Lab, Geneva, Switzerland (GRID:grid.5333.6) (ISNI:0000000121839049)




