Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wheat (Triticum aestivum L.) breeding programs can take over a decade to release a new variety. However, new methods of selection, such as genomic selection (GS), must be integrated to decrease the time it takes to release new varieties to meet the demand of a growing population. The implementation of GS into breeding programs is still being explored, with many studies showing its potential to change wheat breeding through achieving higher genetic gain. In this review, we explore the integration of GS for a wheat breeding program by redesigning the traditional breeding pipeline to implement GS. We propose implementing a two-part breeding strategy by differentiating between population improvement and product development. The implementation of GS in the product development pipeline can be integrated into most stages and can predict within and across breeding cycles. Additionally, we explore optimizing the population improvement strategy through GS recurrent selection schemes to reduce crossing cycle time and significantly increase genetic gain. The recurrent selection schemes can be optimized for parental selection, maintenance of genetic variation, and optimal cross-prediction. Overall, we outline the ability to increase the genetic gain of a breeding program by implementing GS and a two-part breeding strategy.

Details

Title
Utilizing Genomic Selection for Wheat Population Development and Improvement
Author
Merrick, Lance F 1   VIAFID ORCID Logo  ; Herr, Andrew W 1 ; Sandhu, Karansher S 1   VIAFID ORCID Logo  ; Lozada, Dennis N 2 ; Carter, Arron H 1   VIAFID ORCID Logo 

 Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; [email protected] (L.F.M.); [email protected] (A.W.H.); [email protected] (K.S.S.) 
 Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; [email protected] 
First page
522
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632183298
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.