It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
New two-layer Ruddlesden—Popper (RP) oxide La0.25Sr2.75FeNiO7−δ (LSFN) in the combination of Sr3Fe2O7−δ and La3Ni2O7−δ was successfully synthesized and studied as the potential active single-phase and composite cathode for protonic ceramics fuel cells (PCFCs). LSFN with the tetragonal symmetrical structure (I4/mmm) is confirmed, and the co-existence of Fe3+/Fe4+ and Ni3+/Ni2+ couples is demonstrated by X-ray photoelectron spectrometer (XPS) analysis. The LSFN conductivity is apparently enhanced after Ni doping in Fe-site, and nearly three times those of Sr3Fe2O7−δ, which is directly related to the carrier concentration and conductor mechanism. Importantly, anode supported PCFCs using LSFN-BaZr0.1Ce0.7Y0.2O3−δ (LSFN-BZCY) composite cathode achieved high power density (426 mW·cm−2 at 650 °C) and low electrode interface polarization resistance (0.26 Ω·cm2). Besides, distribution of relaxation time (DRT) function technology was further used to analyse the electrode polarization processes. The observed three peaks (P1, P2, and P3) separated by DRT shifted to the high frequency region with the decreasing temperature, suggesting that the charge transfer at the electrode-electrolyte interfaces becomes more difficult at reduced temperatures. Preliminary results demonstrate that new two-layer RP phase LSFN can be a promising cathode candidate for PCFCs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 China University of Mining and Technology, School of Materials Science and Physics, Xuzhou, China (GRID:grid.411510.0) (ISNI:0000 0000 9030 231X)