Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carbon materials have gained considerable attention in recent years due to their superior properties. Activated carbon has been used in supercapacitors due to its density and rapid adsorption capability. The sp2–sp3 hybrid porous carbon materials are synthesized using herringbone-type carbon nanofibers (CNFs) and carbonized spherical phenol resins, with KOH as the activating agent. The morphology of the hybrid porous carbon facilitates the formation of ribbon-like nanosheets from highly activated CNFs wrapped around spherical resin-based activated carbon. The etching and separation of the CNFs produce a thin ribbon-like nanosheet structure; these CNFs simultaneously form new bonds with activated carbon, forming the sp2–sp3 hybrid porous structure. The relatively poor electrical conductivity of amorphous carbon is improved by the 3D conductive network that interconnects the CNF and amorphous carbon without requiring additional conductive material. The composite electrode has high electron conductivity and a large surface area with a specific capacitance of 120 F g−1. Thus, the strategy substantially simplifies the hybrid materials of sp2-hybridized CNFs and sp3-hybridized amorphous spherical carbon and significantly improves the comprehensive electrochemical performance of supercapacitors. The developed synthesis strategy provides important insights into the design and fabrication of carbon nanostructures that can be potentially applied as electrode materials for supercapacitors.

Details

Title
sp2–sp3 Hybrid Porous Carbon Materials Applied for Supercapacitors
Author
Ji Su Chae 1   VIAFID ORCID Logo  ; Won-seop Kang 2 ; Roh, Kwang Chul 1 

 Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, Jinju-si 52851, Korea; [email protected] 
 Vina Tech Co., Ltd., Jeonju-si 54853, Jeollabuk-do, Korea; [email protected] 
First page
5990
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580974020
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.