Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to enforce the mechanical strength and antibacterial ability of biofilm and explore the underlying mechanism, sodium lignosulfonate (SL) and ε-polylysine (ε-PL) were introduced to fabricate the composite film of konjac glucomannan (KGM)/SL/ε-PL in the present study. According to our previous method, 1% (w/v) of KGM was the optimal concentration for the film preparation method, on the basis of which the amount of SL and ε-PL were screened by mechanical properties enforcement of film. The structure, mechanical performance and thermal stability of the film were characterized by SEM, FTIR, TGA and tensile strength tests. The optimized composite film was comprised of KGM 1% (w/v), SL 0.2% (w/v), and ε-PL 0.375% (w/v). The tensile strength (105.97 ± 4.58 MPa, p < 0.05) and elongation at break (95.71 ± 5.02%, p < 0.05) of the KGM/SL/ε-PL composite film was greatly improved compared with that of KGM. Meanwhile, the thermal stability and antibacterial property of film were also enhanced by the presence of SL and ε-PL. In co-culturation mode, the KGM/SL/ε-PL composite film showed good inhibitory effect on Escherichia coli (22.50 ± 0.31 mm, p < 0.05) and Staphylococcus aureus (19.69 ± 0.36 mm, p < 0.05) by determining the inhibition zone diameter. It was revealed that KGM/SL/ε-PL composite film shows enhanced mechanical strength and reliable antibacterial activities and it could be a potential candidate in the field of food packaging.

Details

Title
Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability
Author
Xu, Xiaowei; Pang, Jie
First page
3367
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2581005812
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.