Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The goal of this work is to analyze the effectiveness of deep-learning-based face detection algorithms applied to thermal images, especially for faces covered by virus protective face masks. As part of this work, a set of thermal images was prepared containing over 7900 images of faces with and without masks. Selected raw data preprocessing methods were also investigated to analyze their influence on the face detection results. It was shown that the use of transfer learning based on features learned from visible light images results in mAP greater than 82% for half of the investigated models. The best model turned out to be the one based on Yolov3 model (mean average precision—mAP, was at least 99.3%, while the precision was at least 66.1%). Inference time of the models selected for evaluation on a small and cheap platform allows them to be used for many applications, especially in apps that promote public health.

Details

Title
Face with Mask Detection in Thermal Images Using Deep Neural Networks
Author
Głowacka, Natalia  VIAFID ORCID Logo  ; Rumiński, Jacek  VIAFID ORCID Logo 
First page
6387
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2581055672
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.