Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Most of the studies about stormwater low-impact development technologies (LID) used generalized observations without fully understanding the mechanisms affecting the whole performance of the systems from the catchment to the facility itself. At present, these LID technologies have been treated as black box due to fluctuating flow and environmental conditions affecting its operation and treatment performance. As such, the implications of microbial community to the overall performance of the tree-box filter (TBF) were investigated in this study. Based on the results, summer season was found to be the most suitable season for microorganism growth as greater microorganism count was found in TBF during this season compared to other seasons. Least microorganism count was found in spring which might have been affected by the plant growth during this season since plant penology influences the seasonal dynamics of soil microorganisms. Litterfall during fall season might have affected the microorganism count during winter as, during this season, the compositional variety of soil organic matter changes affecting growth of soil microbial communities. Microbial analyses of soil samples collected in TBF revealed that the most dominant microorganism phylum is Proteobacteria in all the seasons in both inlet and outlet comprising 37% to 47% of the total microorganism count. Proteobacteria is of great importance to carbon, sulfur, and nitrogen cycling in soil. Proteobacteria was followed by Acidobacteria, Actinobacteria, and Chloroflexi which comprises 6% to 20%, 9% to 20%, and 2% to 27%, respectively, of the total microorganism count for each season. Each microorganism phylum was found to have varying correlation to different soil chemical parameters implying the effects of these parameters to microorganism survival in LID technologies. Depending on the target biogeochemical cycle, maintaining a good environment for a specific microbial phylum may be decided. These findings were useful in optimizing the design and performance of tree box filters considering physical, chemical, and biological pollutant removal mechanisms.

Details

Title
Implications of Microbial Community to the Overall Performance of Tree-Box Filter Treating Parking Lot Runoff
Author
Geronimo, Franz Kevin; Nash Jett Reyes; Choi, Hyeseon; Lee-Hyung, Kim
First page
10877
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2581068302
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.