Abstract

Triggered by the pioneering research on graphene, the family of two-dimensional layered materials (2DLMs) has been investigated for more than a decade, and appealing functionalities have been demonstrated. However, there are still challenges inhibiting high-quality growth and circuit-level integration, and results from previous studies are still far from complying with industrial standards. Here, we overcome these challenges by utilizing machine-learning (ML) algorithms to evaluate key process parameters that impact the electrical characteristics of MoS2 top-gated field-effect transistors (FETs). The wafer-scale fabrication processes are then guided by ML combined with grid searching to co-optimize device performance, including mobility, threshold voltage and subthreshold swing. A 62-level SPICE modeling was implemented for MoS2 FETs and further used to construct functional digital, analog, and photodetection circuits. Finally, we present wafer-scale test FET arrays and a 4-bit full adder employing industry-standard design flows and processes. Taken together, these results experimentally validate the application potential of ML-assisted fabrication optimization for beyond-silicon electronic materials.

Here, the authors demonstrate the application of machine learning to optimize the device fabrication process for wafer-scale 2D semiconductors, and eventually fabricate digital, analog, and optoelectrical circuits.

Details

Title
Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning
Author
Chen, Xinyu 1 ; Xie Yufeng 1 ; Sheng Yaochen 1 ; Tang, Hongwei 1 ; Wang, Zeming 1 ; Wang, Yu 1 ; Wang, Yin 1 ; Liao Fuyou 1 ; Ma, Jingyi 1 ; Guo Xiaojiao 1 ; Tong, Ling 1   VIAFID ORCID Logo  ; Liu Hanqi 1 ; Liu, Hao 1 ; Wu, Tianxiang 1 ; Cao Jiaxin 1 ; Bu Sitong 1 ; Shen, Hui 1 ; Bai Fuyu 1 ; Huang, Daming 1 ; Deng Jianan 2   VIAFID ORCID Logo  ; Riaud Antoine 1   VIAFID ORCID Logo  ; Xu Zihan 3 ; Wu Chenjian 4 ; Xing Shiwei 4 ; Lu, Ye 2 ; Ma Shunli 1 ; Sun Zhengzong 1   VIAFID ORCID Logo  ; Xue Zhongyin 5 ; Zengfeng, Di 5 ; Gong, Xiao 6 ; Zhang, David Wei 1 ; Zhou, Peng 1   VIAFID ORCID Logo  ; Wan, Jing 2 ; Bao Wenzhong 1   VIAFID ORCID Logo 

 Fudan University, State Key Laboratory of ASIC and System, School of Microelectronics, Shanghai, P. R. China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443) 
 Fudan University, State Key Laboratory of ASIC and System, School of Information Science and Technology, Shanghai, P. R. China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443) 
 Shenzhen Six Carbon Technology, Shenzhen, P. R. China (GRID:grid.8547.e) 
 Soochow University, School of Electronic and Information Engineering, Suzhou, P. R. China (GRID:grid.263761.7) (ISNI:0000 0001 0198 0694) 
 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai, P. R. China (GRID:grid.458459.1) (ISNI:0000 0004 1792 5798) 
 National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore (GRID:grid.4280.e) (ISNI:0000 0001 2180 6431) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2581106234
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.