It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper investigates the dissimilar friction stir lap welding of AA2198 and AA7075 sheets. The influence of processing parameters, namely welding speed and tool rotational speed on joint features, microstructure, and mechanical properties were studied by implementing a full factorial design of experiments. Axial and transversal forces were continuously measured during the welding process using a sensed fixture aiming at the correlation of processing parameters, forces, and quality of the achieved joints. Obtained outcomes showed hook formation for all the combination of parameters and the existence of a very narrow processing window in which it is possible to avoid the formation of internal defects, such as grooves and tunnels. The influence of the weld bead morphology on the lap shear strength was elucidated proving that the strength is ruled by the hook morphology. The microstructure of the joints was studied and discussed considering also the microhardness distribution.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Naples “Federico II”, Department of Chemical, Materials and Production Engineering, Naples, Italy (GRID:grid.4691.a) (ISNI:0000 0001 0790 385X)
2 University of Salerno, Department of Industrial Engineering, Fisciano, Italy (GRID:grid.11780.3f) (ISNI:0000 0004 1937 0335)