It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Grain filling is the key stage for achieving high grain yield. Subsoiling tillage, as an effective conservation tillage, has been widely used in the maize planting region of China. This study was conducted to explore the effects of subsoiling on the grain filling characteristics of maize varieties of different eras. Five typical maize varieties from different eras (1970s, 1980s, 1990s, 2000s and 2010s) were used as experimental materials with two tillage modalities (rotation tillage and subsoiling tillage). The characteristic parameters (Tmax: the time when the maximum grouting rate was reached, Wmax: the grain weight at the maximum filling rate, Rmax: the maximum grouting rate, P: the active grouting stage, Gmean: the average grouting rate; A: the ultimate growth mass) and rate parameters (T1: the grain filling duration of the gradually increasing stage, V1: the average grain filling rate of the gradually increasing stage, T2: he grain filling duration of the rapidly increasing stage, V2: the average grain filling rate of the rapidly increasing stage, T3: the grain filling duration of the slowly increasing stage, V3: the average grain filling rate of the slowly increasing stage) of grain filling of two tillage modalities were analyzed and compared. The results showed that the filling parameters closely correlated with the 100-kernel weight were significantly different among varieties from different eras, and the grain filling parameters of the 2010s variety were better than those of the other varieties, the P and Tmax prolonged by 4.06–19.25%, 5.88–27.53% respectively, the Rmax and Gmean improved by 5.68–14.81%, 4.76–12.82% and the Wmax increased by 10.14–32.58%. Moreover, the 2010s variety helped the V2 and V3 increase by 6.49–13.89%, 4.55–15.00%. In compared with rotation tillage, the grain yield of maize varieties from different eras increased by 4.28–7.15% under the subsoiling condition, while the 100-kernel weight increased by 3.53–5.06%. Under the same contrast conditions, subsoiling improved the Rmax, Wmax and Gmean by 1.23–4.86%, 4.01–5.96%, 0.25–2.50% respectively, delayed the Tmax by 4.04–5.80% and extended the P by 1.19–4.03%. These differences were major reasons for the significant increases in 100-kernel dry weight under the subsoiling condition. Moreover, subsoiling enhanced the V2 and V3 by 0.70–4.29%, 0.00–2.44%. The duration of each filling stage and filling rate of maize varieties from different eras showed different responses to subsoiling. Under the subsoiling condition, the average filling rate of the 1970–2010s varieties were improved by 1.18%, 0.34%, 0.57%, 1.57% and 2.69%. In the rapidly increasing period, the grain filling rate parameters of the 2010s variety were more sensitive to subsoiling than those of the other varieties. The rapidly increasing and slowly increasing period are the key period of grain filling. Since the 2010s variety and subsoiling all improve the grain filling rate parameters of two periods, we suggest that should select the variety with higher grain filling rate in the rapidly increasing and slowly increasing period, and combine subsoiling measures to improve the grain filling characteristic parameters of maize in production, so as to achieve the purpose of increasing 100 grain weight and yield.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Inner Mongolia Agricultural University, Hohhot, China (GRID:grid.411638.9) (ISNI:0000 0004 1756 9607)