It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A rapid immobilization method for cellulase was developed. Functional graphene oxide was synthesized and grafted with hydrophobic spacer P-β-sulfuric acid ester ethyl sulfone aniline (SESA) though etherification and diazotization. The functionalized graphene oxide was characterized by Fourier-transform infrared spectroscopy and was used as the carrier for the immobilization of cellulase via covalent binding. The immobilization of cellulase was finished in a very short time (10 min) and very high immobilization yield and efficiency of above 90% were achieved after optimization. When compared with the free cellulase, thermal and operational stabilities of the immobilized cellulase were improved significantly. At 50 °C, the half-life of the immobilized cellulase (533 min) was six-fold higher than that of the free cellulase (89 min). Additionally, the affinity between immobilized cellulase (Km = 2.19 g·L−1) and substrate was more favorable than that of free cellulase (Km = 3.84 g·L−1), suggesting the immobilized cellulase has higher catalytic efficiency. The possible immobilization mechanism was proposed. The results strongly indicate that the immobilization is highly efficient and has great potential for the immobilization of other enzymes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 College of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535011, China
2 School of Pharmacy, United Pharmaceutical Institute of Jiangsu University and Shandong Tianzhilvye Biotechnology Co. Ltd., Jiangsu University, Zhenjiang 212013, China
3 School of Pharmacy, Guangxi Medical University, Nanning 530021, China
4 College of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535011, China; School of Pharmacy, United Pharmaceutical Institute of Jiangsu University and Shandong Tianzhilvye Biotechnology Co. Ltd., Jiangsu University, Zhenjiang 212013, China