It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Artificial intelligence (AI) and machine learning promise to make major changes to the relationship of people and organizations with technology and information. However, as with any form of information processing, they are subject to the limitations of information linked to the way in which information evolves in information ecosystems. These limitations are caused by the combinatorial challenges associated with information processing, and by the tradeoffs driven by selection pressures. Analysis of the limitations explains some current difficulties with AI and machine learning and identifies the principles required to resolve the limitations when implementing AI and machine learning in organizations. Applying the same type of analysis to artificial general intelligence (AGI) highlights some key theoretical difficulties and gives some indications about the challenges of resolving them.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer