Full Text

Turn on search term navigation

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The establishment of an effective policy response to rising heatwave impacts is most effective when the history of heatwaves, their current impacts and future risks, are mapped by a common metric. In response meteorological agencies aim to develop seamless climate, forecast, and warning heat impact services, spanning all temporal and spatial scales. The ability to diagnose heatwave severity using the Excess Heat Factor (EHF) has allowed the Australian Bureau of Meteorology (the Bureau) to publicly release 7-day heatwave severity maps since 2014. National meteorological agencies in the UK and the United States are evaluating global 7-day and multi-week EHF heatwave severity probability forecasts, whilst the Bureau contributes to a Copernicus project to supply the health sector with global EHF severity heatwave projection scenarios. In an evaluation of impact skill within global forecast systems, EHF intensity and severity is reviewed as a predictor of human health impact, and extended using climate observations and human health data for sites around the globe. Heatwave intensity, determined by short and long-term temperature anomalies at each locality, is normalized to permit spatial analysis and inter-site comparison. Dimensionless heatwave event moments of peak severity and accumulated severity are shown to correlate with noteworthy events around the globe, offering new insights into current and future heatwave variability and vulnerability. The EHF severity metric permits the comparison of international heatwave events and their impacts, and is readily implemented within international heatwave early warning systems.

Details

Title
Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index
Author
Nairn, John 1 ; Ostendorf, Bertram 2   VIAFID ORCID Logo  ; Bi, Peng 3 

 School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Bureau of Meteorology, Adelaide, SA 5000, Australia 
 School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia 
 School of Public Health, The University of Adelaide, Adelaide, SA 5005, Australia 
First page
2494
Publication year
2018
Publication date
2018
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582817283
Copyright
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.