It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The sequence of decay in fern pinnules was tracked using the species Davallia canariensis. Taphonomic alterations in the sediment–water interface (control tanks) and in subaqueous conditions with microbial mats were compared. The decay sequences were similar in control and mat tanks; in both cases, pinnules preserved the shape throughout the four-month experience. However, the quality and integrity of tissues were greater in mats. In control tanks, in which we detected anoxic and neutral acid conditions, the appearance of a fungal–bacterial biofilm promoted mechanical (cell breakage and tissue distortions) and geochemical changes (infrequent mineralizations) on the external and internal pinnule tissues. In mats, characterized by stable dissolved oxygen and basic pH, pinnules became progressively entombed. These settings, together with the products derived from mat metabolisms (exopolymeric substances, proteins, and rich-Ca nucleation), promoted the integrity of external and internal tissues, and favored massive and diverse mineralization processes. The experience validates that the patterns of taphonomic alterations may be applied in fossil plants.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Diversity, Ecology and Evolution of Microbes Laboratory, Ecologie Systématique Evolution, CNRS, Université Paris-Sud, 91405 Orsay, France; Department of Ecology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2 Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
3 Department of Ecology, Universidad Autónoma de Madrid, 28049 Madrid, Spain