It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, bromelain was used to break soy protein molecules into polypeptide chains, and triglycidylamine (TGA) was added to develop a bio-adhesive. The viscosity, residual rate, functional groups, thermal behavior, and fracture surface of different adhesives were measured. A three-ply plywood was fabricated and evaluated. The results showed that using 0.1 wt% bromelain improved the soy protein isolate (SPI) content of the adhesive from 12 wt% to 18 wt%, with viscosity remaining constant, but reduced the residual rate by 9.6% and the wet shear strength of the resultant plywood by 69.8%. After the addition of 9 wt% TGA, the residual rate of the SPI/bromelain/TGA adhesive improved by 13.7%, and the wet shear strength of the resultant plywood increased by 681.3% relative to that of the SPI/bromelain adhesive. The wet shear strength was 30.2% higher than that of the SPI/TGA adhesive, which was attributed to the breakage of protein molecules into polypeptide chains. This occurrence led to (1) the formation of more interlocks with the wood surface during the curing process of the adhesive and (2) the exposure and reaction of more hydrophilic groups with TGA to produce a denser cross-linked network in the adhesive. This denser network exhibited enhanced thermal stability and created a ductile fracture surface after the enzymatic hydrolysis process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China