Full text

Turn on search term navigation

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Jasmonate ZIM-domain (JAZ) family proteins comprise a class of transcriptional repressors that silence jasmonate-inducible genes. Although a considerable amount of research has been carried out on this gene family, there is still very little information available on the role of specific JAZ gene members in multiple pathogen resistance, especially in non-model species. In this study, we investigated the potential resistance function of the VqJAZ7 gene from a disease-resistant wild grapevine, Vitis quinquangularis cv. “Shang-24”, through heterologous expression in Arabidopsis thaliana. VqJAZ7-expressing transgenic Arabidopsis were challenged with three pathogens: the biotrophic fungus Golovinomyces cichoracearum, necrotrophic fungus Botrytis cinerea, and semi-biotrophic bacteria Pseudomonas syringae pv. tomato DC3000. We found that plants expressing VqJAZ7 showed greatly reduced disease symptoms for G. cichoracearum, but not for B. cinerea or P. syringae. In response to G cichoracearum infection, VqJAZ7-expressing transgenic lines exhibited markedly higher levels of cell death, superoxide anions (O2¯, and H2O2 accumulation, relative to nontransgenic control plants. Moreover, we also tested the relative expression of defense-related genes to comprehend the possible induced pathways. Taken together, our results suggest that VqJAZ7 in grapevine participates in molecular pathways of resistance to G. cichoracearum, but not to B. cinerea or P. syringae.

Details

Title
Heterologous Expression of the Grapevine JAZ7 Gene in Arabidopsis Confers Enhanced Resistance to Powdery Mildew but Not to Botrytis cinerea
Author
Hanif, Muhammad 1 ; Mati Ur Rahman 1 ; Gao, Min 1 ; Yang, Jinhua 1 ; Ahmad, Bilal 1 ; Yan, Xiaoxiao 1 ; Wang, Xiping 1   VIAFID ORCID Logo 

 State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China 
First page
3889
Publication year
2018
Publication date
2018
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582846666
Copyright
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.