Abstract

Polygenic risk prediction is a widely investigated topic because of its promising clinical applications. Genetic variants in functional regions of the genome are enriched for complex trait heritability. Here, we introduce a method for polygenic prediction, LDpred-funct, that leverages trait-specific functional priors to increase prediction accuracy. We fit priors using the recently developed baseline-LD model, including coding, conserved, regulatory, and LD-related annotations. We analytically estimate posterior mean causal effect sizes and then use cross-validation to regularize these estimates, improving prediction accuracy for sparse architectures. We applied LDpred-funct to predict 21 highly heritable traits in the UK Biobank (avg N = 373 K as training data). LDpred-funct attained a +4.6% relative improvement in average prediction accuracy (avg prediction R2 = 0.144; highest R2 = 0.413 for height) compared to SBayesR (the best method that does not incorporate functional information). For height, meta-analyzing training data from UK Biobank and 23andMe cohorts (N = 1107 K) increased prediction R2 to 0.431. Our results show that incorporating functional priors improves polygenic prediction accuracy, consistent with the functional architecture of complex traits.

Incorporating functional information has shown promise for improving polygenic risk prediction of complex traits. Here, the authors describe polygenic prediction method LDpred-funct, and demonstrate its utility across 21 heritable traits in the UK Biobank.

Details

Title
Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets
Author
Márquez-Luna, Carla 1   VIAFID ORCID Logo  ; Gazal, Steven 2   VIAFID ORCID Logo  ; Po-Ru, Loh 3   VIAFID ORCID Logo  ; Kim, Samuel S 4   VIAFID ORCID Logo  ; Furlotte Nicholas 5 ; Auton, Adam 5 ; Agee, Michelle 5 ; Alipanahi Babak 5 ; Bell, Robert K 5 ; Bryc Katarzyna 5 ; Elson, Sarah L 5 ; Fontanillas Pierre 5 ; Hinds, David A 5 ; McCreight, Jey C 5 ; Huber, Karen E 5 ; Kleinman, Aaron 5 ; Litterman, Nadia K 5 ; McIntyre, Matthew H 5 ; Mountain, Joanna L 5 ; Noblin, Elizabeth S 5 ; Northover Carrie A M 5 ; Pitts, Steven J 5 ; Fah, Sathirapongsasuti J 5 ; Sazonova, Olga V 5 ; Shelton, Janie F 5 ; Shringarpure Suyash 5 ; Tian, Chao 5 ; Tung, Joyce Y 5 ; Vacic Vladimir 5 ; Wilson, Catherine H 5 ; Price Alkes L 6   VIAFID ORCID Logo 

 Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Broad Institute of Harvard and MIT, Program in Medical and Population Genetics, Cambridge, USA (GRID:grid.66859.34); Icahn School of Medicine at Mount Sinai, Charles R. Bronfman Institute for Personalized Medicine, New York, USA (GRID:grid.59734.3c) (ISNI:0000 0001 0670 2351) 
 Broad Institute of Harvard and MIT, Program in Medical and Population Genetics, Cambridge, USA (GRID:grid.66859.34); Icahn School of Medicine at Mount Sinai, Charles R. Bronfman Institute for Personalized Medicine, New York, USA (GRID:grid.59734.3c) (ISNI:0000 0001 0670 2351) 
 Broad Institute of Harvard and MIT, Program in Medical and Population Genetics, Cambridge, USA (GRID:grid.66859.34); Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Brigham and Women’s Hospital and Harvard Medical School, Division of Genetics, Department of Medicine, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
 Broad Institute of Harvard and MIT, Program in Medical and Population Genetics, Cambridge, USA (GRID:grid.66859.34); Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 23andMe Inc., Mountain View, USA (GRID:grid.420283.f) (ISNI:0000 0004 0626 0858) 
 Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Broad Institute of Harvard and MIT, Program in Medical and Population Genetics, Cambridge, USA (GRID:grid.66859.34); Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582905440
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.