Abstract
Background
One of the major challenges in developing an effective vaccine against asexual stages of Plasmodium falciparum is genetic polymorphism within parasite population. Understanding the genetic polymorphism like block 2 region of merozoite surface protein-1 (msp-1) gene of P. falciparum enlighten mechanisms underlining disease pathology, identification of the parasite clone profile from the isolates, transmission intensity and potential deficiencies of the ongoing malaria control and elimination efforts in the locality. Detailed understanding of local genetic polymorphism is an input to pave the way for better management, control and elimination of malaria. The aim of this study was to detect the most frequent allelic variant of the msp-1 gene of P. falciparum clinical isolates from selected health facilities in Adama town and its surroundings, Oromia, Ethiopia.
Methods
One hundred thirty-nine clinical isolates were successfully amplified for msp-1 gene using specific primers. Nested PCR amplification was conducted targeting K1, MAD20, and R033 alleles followed by gel electrophoresis for fragment analysis. Based on the detection of a PCR fragment, infections were classified as monoclonal or multiple infections.
Results
19 different size polymorphism of msp-1 gene were identified in the study, with 67(48%) MAD20, 18 (13%) K-1 and 18 (13%) RO33 allelic family. Whereas, the multiple infections were 21(15%), 8 (5.8%), 4(2.9%), 3(2.2%) for MAD20 + K-1, MAD20 + RO33, K-1 + RO33, and MAD20 + K-1, RO33, respectively. The overall Multiplicity of infection (MOI) was 1.3 and the expected heterozygosity (He) was 0.39 indicating slightly low falciparum malaria transmission.
Conclusion
The status of msp-1 allele size polymorphism, MOI and He observed in the study revealed the presence of slightly low genetic diversity of P. falciparum clinical isolates. However, highly frequent MAD20 allelic variant was detected from clinical isolates in the study area. Moreover, the driving force that led to high predominance of MAD20 allelic variant revealed in such malaria declining region demands further research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer