Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As with other engineering design tasks, mine design involves setting design objectives and constraints (the feasible solution space) and finding the optimal design alternative. Mine engineers often struggle to incorporate the preferences of local community members into their evaluation of mine design alternatives because the mining literature lacks tools to quantify such risks during mine planning. This paper presents an approach to evaluate community acceptance (i.e., community preferences for the alternatives) using discrete choice models and decision-based design during mine planning. Using discrete choice models and a rigorous framework, engineers can estimate the cost of social risks as a function of the probability that individuals in the host community will prefer a particular design alternative. They can then estimate the overall utility of a particular design alternative to the project proponents. This paper illustrates the proposed approach with a strategic mine planning exercise for a gold mine. The framework can be a useful tool for designing mines for sustainability, if combined with effective community engagement and management’s commitment to creating shared value.

Details

Title
Evaluating Mine Design Alternatives for Social Risks Using Discrete Choice Analysis
Author
Awuah-Offei, Kwame 1   VIAFID ORCID Logo  ; Que, Sisi 2   VIAFID ORCID Logo  ; Atta Ur Rehman 1 

 Thomas J. O’Keefe Institute for Sustainable Supply of Strategic Minerals, Missouri University of Science & Technology, Rolla, MO 65409, USA; [email protected] 
 Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; [email protected] 
First page
8700
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582933179
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.