It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The characteristics of light source have an important influence on the measurement performance of canopy reflectance spectrometer. The size of the effective irradiation area and the uniformity of the light intensity distribution in the irradiation area determine the ability of the spectrometer to express the group characteristics of the measured objects.
Methods
In this paper, an evaluation method was proposed to theoretically analyze the influence of the light intensity distribution characteristics of the light source irradiation area on the measurement results. The light intensity distribution feature vector and the reflectance feature vector of the measured object were constructed to design reflectance difference coefficient, which could effectively evaluate the measurement performance of the canopy reflectance spectrometer. By using self-design light intensity distribution test system and GreenSeeker RT100, the evaluation method was applied to evaluate the measurement results.
Results
The evaluation results showed that the vegetation indices based on the arithmetic average reflectance of the measured object could be obtained theoretically only when the light intensity distribution of the light source detected by the spectrometer was uniform, which could fully express the group characteristics of the object. When the light intensity distribution of the active light source was not uniform, the measure value was difficult to fully express the group characteristics of the object. And the measured object reflectance was merely the weighted average value based on the light intensity distribution characteristics.
Conclusions
According to the research results of this paper, sunlight is the most ideal detection light source. If the passive light source spectrometer can improve the measurement method to adapt to the change of sunlight intensity, its measurement performance will be better than any active-light spectrometer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer