It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
With the emergence of three-dimensional (3D) integration technology, analysis of soft tissue displacement and morphological changes after maxillary full-arch implant-supported fixed prostheses can be performed. The aim of this study was to verify the feasibility of the 3D integration method for constructing the relative position of the prostheses and facial soft tissue, evaluate the displacement and morphological variation of the upper lips after maxillary full-arch implant-supported fixed prostheses.
Methods
Twenty-five maxillary edentulous patients were recruited in this study. At the time of final prosthesis delivery, the 3D prostheses data and three 3D facial profiles were integrated. After method validation, the 3D position changes of seven soft tissue landmarks were used to reflect the 25 upper lips. The variation of four morphological distances were analyzed to reflect the morphological alteration of the upper lips. Two pairs of dentofacial landmarks were used to analyze the sagittal relative position of the prostheses and soft tissue. The included patients were also grouped to determine the impact of sex, upper lip thickness, and length on lip support changes.
Results
The average distance of the two matched relative reliable forehead regions was only 0.32 mm. The sagittal shifts of labrale superius (LS), stomion (STO), crista philtri left (CPHL) and crista philtri right (CPHR) were 3.44 ± 1.39 mm, 2.52 ± 1.38 mm, 3.04 ± 1.18 mm, and 3.12 ± 1.21 mm, respectively. With the exception of the decrease in the length of subnasale (SN)-LS, the length of cheilion right (CHR)-cheilion left (CHL), CPHR-CPHL, and LS-STO significantly increased. The two pairs of dentofacial landmarks had strong positive movement correlations along the sagittal direction. Patients with thinner and longer lips showed more lip support than those with thicker and shorter lips by a clinically insignificant amount.
Conclusions
The integration method of 3D facial and dental data showed high repeatability in constructing the dentofacial relative position. The linear equations reflecting dentofacial relative position could aid clinicians in evaluating the restoration effect and estimate the upper lip variation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer