Content area

Abstract

We study episodic reinforcement learning (RL) in non-stationary linear kernel Markov decision processes (MDPs). In this setting, both the reward function and the transition kernel are linear with respect to the given feature maps and are allowed to vary over time, as long as their respective parameter variations do not exceed certain variation budgets. We propose the \underline{p}eriodically \underline{r}estarted \underline{o}ptimistic \underline{p}olicy \underline{o}ptimization algorithm (PROPO), which is an optimistic policy optimization algorithm with linear function approximation. PROPO features two mechanisms: sliding-window-based policy evaluation and periodic-restart-based policy improvement, which are tailored for policy optimization in a non-stationary environment. In addition, only utilizing the technique of sliding window, we propose a value-iteration algorithm. We establish dynamic upper bounds for the proposed methods and a minimax lower bound which shows the (near-) optimality of the proposed methods. To our best knowledge, PROPO is the first provably efficient policy optimization algorithm that handles non-stationarity.

Details

1009240
Identifier / keyword
Title
Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 23, 2024
Section
Computer Science; Statistics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-24
Milestone dates
2021-10-18 (Submission v1); 2022-10-02 (Submission v2); 2024-12-23 (Submission v3)
Publication history
 
 
   First posting date
24 Dec 2024
ProQuest document ID
2583236176
Document URL
https://www.proquest.com/working-papers/optimistic-policy-optimization-is-provably/docview/2583236176/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-25
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic