Abstract

大数据、物联网与精密定位技术的发展推动了城市感知的进步。随着社会活动的与日俱增,出租车轨迹数据不仅记录了出租车的行车轨迹,还蕴藏着道路交通状态、城市居民出行规律、城市结构及其他社会问题。通过各种数据分析与挖掘手段对出租车轨迹数据进行深入探究,对于智能交通、城市规划等有着重要意义。本文综述了近十年国内外基于出租车轨迹大数据的相关研究,按照空间统计方法、时间序列方法、图论与网络方法及机器学习方法等4类,详细阐述各类方法的研究现状。随后,本文分析了现有研究的应用领域、热点主题和发展趋势。最后,本文指出了出租车轨迹数据挖掘研究领域面临的挑战和未来研究方向。

Alternate abstract:

The development of big data technology, internet of thing and precise positioning has promoted the progress of city perception. The increasing taxi trajectory data not only records the pathway of taxis, but also implies the real-time traffic status, the information of urban dwellers' travel rule, urban structure and potential social problems. It is of great significance to mine and analyze the taxi trajectory data for smart transportation, urban planning etc. This paper reviews the field of taxi trajectory data analysis and applications in the past ten years. From the perspective of research methodology, four categories are identified:spatial statistical, time series analysis, graph and network analysis, and machine learning. Each category is reviewed with its current research situation, advantages disadvantages. Later on, applications, hot topics and future trends of taxi trajectory analysis are summarized to four areas including traffic management, resources and environmental protection, city planning, and human mobility. Finally, the current challenges and the future research directions in the field of taxi trajectory data mining are proposed.

Details

Title
出租车轨迹数据挖掘进展
Author
吴华意; 黄蕊; 游兰; 向隆刚
Pages
1341-1356
Section
Review
Publication year
2019
Publication date
Nov 2019
Publisher
Surveying and Mapping Press
ISSN
10011595
Source type
Scholarly Journal
Language of publication
English; Chinese
ProQuest document ID
2583498946
Copyright
© Nov 2019. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.