Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Biocompatible nanomaterials have attracted enormous interest for biomedical applications. Carbonaceous materials, including carbon nanotubes (CNTs), have been widely explored in wound healing and other applications because of their superior physicochemical and potential biomedical properties to the nanoscale level. CNTs-based hydrogels are widely used for wound-healing and antibacterial applications. CNTs-based materials exhibited improved antimicrobial, antibacterial, adhesive, antioxidants, and mechanical properties, which are beneficial for the wound-healing process. This review concisely discussed the preparation of CNTs-based hydrogels and their antibacterial and wound-healing applications. The conductive potential of CNTs and their derivatives is discussed. It has been observed that the conductivity of CNTs is profoundly affected by their structure, temperature, and functionalization. CNTs properties can be easily modified by surface functionalization. CNTs-based composite hydrogels demonstrated superior antibacterial potential to corresponding pure polymer hydrogels. The accelerated wound healing was observed with CNTs-based hydrogels.

Details

Title
Carbon Nanotubes-Based Hydrogels for Bacterial Eradiation and Wound-Healing Applications
Author
Patil, Tejal V 1 ; Patel, Dinesh K 2 ; Sayan Deb Dutta 2   VIAFID ORCID Logo  ; Ganguly, Keya 2 ; Randhawa, Aayushi 3   VIAFID ORCID Logo  ; Lim, Ki-Taek 1   VIAFID ORCID Logo 

 Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; [email protected] (T.V.P.); [email protected] (D.K.P.); [email protected] (S.D.D.); [email protected] (K.G.); Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea 
 Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; [email protected] (T.V.P.); [email protected] (D.K.P.); [email protected] (S.D.D.); [email protected] (K.G.) 
 Department of Microbiology & Biotechnology, Banglore University, Jnana Bharathi Campus, Banglore 560056, India; [email protected] 
First page
9550
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584322043
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.