Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Acetyl-CoA is the precursor of many bio-manufacturing products and is also the hub of the cellular metabolism of energy and substances. However, acetyl-CoA is not a bulk commodity and its application is hindered due to its high cost and low yield. In this study, we screened acetyl donor candidates and utilized 10-deacetylbaccatin III-10-β-O-acetyltransferase (DBAT) in the synthesis of acetyl-CoA with CoASH as the acetyl acceptor. Among the tested candidates, acetylsalicylic acid methyl ester was identified to be the best acetyl donor, followed by acetyl-trans-resveratrol, acetylsalicylic acid ethyl ester, acetylsalicylsalicylic acid, and 4-acetoxyacetanilide. The enzymatic reaction conditions were optimized and the maximum yield of acetyl-CoA reached 14.82 mg/mL, which is the highest yield among all reported approaches to date. Meanwhile, 4.22 mg/mL of the by-product salicylic acid methyl ester, which is another industrial material, was produced. Additionally, a preliminary purification process for acetyl-CoA was established, in which 40 mg acetyl-CoA (HPLC purity > 98%) was acquired from the finished 20 mL reaction system (feeding 46 mg CoASH and 34 mg ASME) with a recovery rate of 86%. Our study lays the foundation for the large-scale production of acetyl-CoA by an enzymatic approach and will promote its application in different fields.

Details

Title
Screening of Acetyl Donors and the Robust Enzymatic Synthesis of Acetyl-CoA by 10-Deacetylbaccatin III-10-β-O-acetyltransferase
Author
Bo-Yong, Zhang; Wang, Hao; Gong, Ting; Tian-Jiao, Chen; Jing-Jing, Chen; Jin-Ling, Yang; Zhu, Ping  VIAFID ORCID Logo 
First page
1240
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584359271
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.