Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, the effects of various conditions of short-term rejuvenation heat treatment on room-temperature mechanical properties of long-term aged P92 boiler steel were investigated. Normalized and tempered P92 steel pipe was thermally exposed at 600 °C for time durations up to 5000 h in order to simulate high-temperature material degradation, as also occurring in service conditions. Thus, thermally embrittled material states of P92 steel were prepared, showing tempered martensitic microstructures with coarsened secondary phase precipitates of Cr23C6-based carbides and Fe2W-based Laves phase. Compared with the initial normalized and tempered material condition, thermally aged materials exhibited a slight decrease in strength properties (i.e., yield stress and ultimate tensile strength) and deformation properties (i.e., total elongation and reduction of area). The hardness values were almost unaffected, whereas the impact toughness values showed a steep decrease after long-term ageing. An idea for designing the rejuvenation heat treatments for restoration of impact toughness was based on tuning the material properties by short-term annealing effects at various selected temperatures somewhat above the long-term ageing temperature of P92 material. Specifically, the proposed heat treatments were performed within the temperature range between 680 °C and 740 °C, employing variable heating up and cooling down conditions. It was revealed that short-term annealing at 740 °C for 1 h with subsequent rapid cooling into water represents the most efficient rejuvenation heat treatment procedure of thermally aged P92 steel for full restoration of impact toughness up to original values of normalized and tempered material state. Microstructural observations clearly indicated partial dissolution of the Laves phase precipitates to be the crucial phenomenon that played a key role in restoring the impact toughness.

Details

Title
The Effects of Various Conditions of Short-Term Rejuvenation Heat Treatment on Room-Temperature Mechanical Properties of Thermally Aged P92 Boiler Steel
Author
Falat, Ladislav  VIAFID ORCID Logo  ; Čiripová, Lucia  VIAFID ORCID Logo  ; Homolová, Viera  VIAFID ORCID Logo  ; Džupon, Miroslav; Džunda, Róbert  VIAFID ORCID Logo  ; Kovaľ, Karol
First page
6076
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584441434
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.